TCP/IP Enhancements for
Satellite Networks

Nasir Ghani and Sudhir Dixit, Nokia Research Center

' With the emerging market for high-mobility remote access broad-
AB STRACT band services, satellite networks are becoming increasingly popu-
lar. Although the ubiquitous TCP/IP protocol is widely used to provide reliable data delivery
in terrestrial networks, it faces many challenges in satellite environments. These stem from
the inherent features of satellite channels, such as large delays, increased error rates, and
bandwidth asymmetry. To address these concerns, a variety of solutions have been pro-
posed. These include direct TCP enhancements to better tune the TCP/IP stack and additional
selective acknowledgment mechanisms. Other proposals use advanced interworking to
reduce sensitivity to various channel features. Examples include multiple TCP sessions, fink-
layer interworking, and ACK control schemes. Improving onboard satellite features (buffer
management, flow control} can also provide benefits for TCP/IP transport. The objective of
this article is to present the various solutions and discuss their possible trade-offs. Overall,

sion multiplexing. (TDM) techniques,
although frequency-division muitiplexing
(FDM) techniques and even hybrid
schemes are possible [1]. To accommo-
date dynamic usage patterns, demand
assignment approaches can be incorpo-
rated with various access schemes [2].
Most TWU systems use ATM and broad-
band integrated services digital network

there exists a rich set of alternatives to meet the challenges in this important arena.

R ecently, the interest in broadband satellite net-

works has grown rapidly. Advances in transmission
technology have led to the availability of low-cost earth termi-
nals with interfaces to standard terrestrial networks. The rela-
tive ease of deployment and superior remote access capabilitics
of satellite nétworks are envisioned to provide bandwidth on
demand to geographically diverse user groups. This is clearly
evidenced by the ongoing development of several large-scale
space-based networks, such as Teledesic, Galaxy/Spaceway,
and Astrolink. Most notably, the Teledesic system aims to pro-
vide access rates of up to 2 Mb/s per user and 150 Mb/s per
gateway [1]. Overall, these trends represent a significant depar-
ture from traditional fixed-circuit broadcast satellite systems

" (i.e., for telephony and television). The desire to support a
diverse range of services in satellite networks implies that
many features inherent in broadband networks, such as asyn-
chronous. transfer mode (ATM) and Internet Protocol (1P),
will also emerge in satellite networks. These include packet

* switching, buffer management, and call admission control tech-
niques (see [1, 2] for good overviews). Despite these emerging
similarities with terrestrial networks, however, satellite net-
works still pose’ many additional challenges,

A crucial requirement for any broadband network is the reli-
able transport of data traffic, namely non-real-time loss-sensi-
tive flows (as opposed to real-time voice/video streams).
Examples include e-mail and file transfers, Web messages, and
facsimile transmissions. Since reliable transmission is mandato-
1y, the ubiquitous Transmission Control Protocol (TCP)/IP has
emerged as the workhorse protocol for most data applications.
TCP uses a sliding window mechariism coupled with reactive
congestion control techniques to gate source emissions. The
protocol modulates a sender’s transmission behavior contingent
on returning acknowledgment (ACK) packets from the remote
receiver’s end, and two variants of TCP are in wide use today:
Tahoe and Reno. A simple overview of a satellite TCP/IP net-
work is shown in Fig, 1, where land-based networks are con-
nected to satellite modems via interworking units (TWUs), such
as the ATM satellite interworking unit (ASIU) [1]. These
IWUs (possibly collocated with modems) perform protocol con-
version between WAN protocols (e.g., IP, ATM) and satellite
link-layer protocols. The latter are necessary due to satellite
channel requirements, and most such protocols use time-divi-

{B-ISDN) interfaces, although Ethernet
and IP ports are also available.

However, many studies have shown
that satellite channels have a largely
adverse impact on TCP performance [1, 3, 4], with the main
problems arising from increased bit error rates (BERs) and
large propagation delays. Such conditions usually cause exces-
sive TCP timeocuts and retransmissions, resulting in farge band-
width inefficiency. In addition, other TCP features pose
additional concerns in satellite environments (small window
sizes, round-trip timer inaccuracies, startup windows, etc),
Despite these challenges, space-based communication still offers
many benefits, such as wide coverage areas, broadcast capabili-
ties, and immunity to adverse geographic conditions, Hence,
satellites will continue to play an important role in the future,
and extending existing data protocols to this domain is of great
importance. In light of the above, many researchers have pro-
posed a wide range of solutions to imprave TCP performance in
satellite networks. These range from link-layer error control
schemes and protocols [1, 3, 5] to more elaborate TCP versions
[6-9], and advanced interworking [3, 4, 10-13]. Although some
solutions are more effective than others, it is likely that modern
systems will draw from all the above. This article presents some
of these solutions and discusses their implications.

ISSUES AND CHALLENGES

The challenges in satellite TCP arise from the various inher-
ent features of satellite channels and netwozk features. These
are briefly outlined.

CHANNEL ERROR RATES
Reduced signal-to-noise ratios (SNRs) are a big probiem in
satellite transmission, since signal strength falls proportional
to the square of the distance. This is also complicated by vari-
ous random atmospheric/space conditions (e.g., rain attenua-
tion) and effects such as multipath and shadowing (akin to
wireless networks). Measurements show that unencoded satel-
lite channels can have BER values around 10-% [3], much
lower than on high-speed wireline media. Since TCP is-a loss-
sensitive protocol using packet losses to control transmissicn
behavior, it is unable to discern between congestion losses and
link corruption losses. Many studies confirm that noisy satellite
links can greatly degrade TCP’s performance since larger
BER values prematurely trigger window reduction mecha-
nisms, even if the network is uncongested [4, 11}. Additional-

64 ' 0163-6804/99/$10.00 © 1999 IEEE

IEEE Communications Magazine * July 1999

Satellite

network AP router-

Vo A‘trhosb_heri_c.eﬁ_fe'.cfs

(f 4

Residential ©~ ..
ASDL

-

B Figure 1. An ovenview of a sample satellite network,

ly, the loss of ACK packets (reverse direction) worsens
throughputs further, since the corresponding data packets

being acknowledged have already been received. Further:

more, errors on satellite links are usually bursty, which is also
very problematic, since the fast recovery/retransmit features of
TCP Reno usually cannot recover [rom excessive packet drops
in a window size [4]. As a result, TCP’s congestion avoidance
mechanism can severely limit window growth., Considering
that TCP necds much larger window sizes in satellite environ-
ments (order of bandwidth delay products [14]), the deleteri-
ous effects of burst errors will be more pronounced. In fact,
many results show that TCP Tahoe (i.e., without fast recoy-
ery) actually outperforms TCP Reno under such conditions [4,
11]. This is because the latter halves its slow start threshold
multiple times during burst losses, and if a timeout occurs,
resulting congestion avoidance window growth is much slower.

PROPAGATION DELAYS

Satellite network delays are influenced by several factors, the
main one being the orbit type. In most low earth orbit (LEQ)
systems, ong-way propagation delays are in the 20-25 ms range.
These values increase to 110150 ms for medium earth orbit
(MEO) and go up to 250-280 ms for geostationary earth orbit
(GEO) [1]. Nevertheless, since LEO systems use smaller orbits,
visibility windows are relatively short, and hence larger constel-
lations with dynamic intersatellite routing are required to pro-
vide continueus coverage over large regions (i.c., tens or even
hundreds-of satellites). All these factors increase end-to-end
delay variability, the amount of which depends on the number
of satellites, orbital dynamics, intersatellite routing algorithms,
and so on [14]. For example, in [3] it is stated that LEO delay
variability can range from a few milliseconds up tc 80 ms when
a satellite is near the horizon. Since TCP traffic is relatively less
time-sensitive, it is reasonable to expect it to be subjected to
dynamic rerouting, adding to delay variability and possibly caus-
ing packet reordering, Other issues such as onboard processing
overheads and buffering can also add to delay.

In general, such delay conditions are problematic for TCP,
reducing its responsiveness to packet drops. This is especially
noticeable for connections wanting only to send marginally

more than the default startup window size (one segment); that -

is, users must wait a full round-trip delay before the first ACK
packet is received in the slow-ssart phase. Delayed ACK
timers at the receiver can also exacerbate this problem, since
the first segment cannot trigger the “ACK-every-other” rule
[3]. Satellite delays combined with increasing channel speeds
(ten of megabits per second or more) also require significant
buffering [4, 15]. Increased delay variances can also adversely
affect TCP timer mechanisms by injecting noise into the esti-
mates. This variability can -result in premature
timeouts/retransmissions, and generally yields incorrect win-
dow sizes [3], reducing the overall bandwidth efficiency. Sim-
ply increasing the TCP timer granularity will not help here

. since larger values may reduce false timeouts, but bandwidth .

underutilization will also increase from longer timeouts.

CHANNEL ASYMMETRY

Many satellite systems have large bandwidth asymmetries
between forward and backward data channels. This is mainly
duc to cost limitations associated with increased transmitter
power and antenna size requirements for higher bandwidth
transmission. Using slower reverse channels allows more cost-
effective receiver designs, and also conserves valuable sate!-
lite bandwidth. Considering the largely unidirectional nature
of most large TCP transfers {e.g.; from Web servers to
remote hosts), slower reverse chanpels can be acceptable to
an‘extent. Moreover, some solutions do away with expensive
satellite transmission capabilities at the receiver altogether,
simply using rerrestrial modem dialup lines for the reverse
(ACK) channel. In such cases, data and ACK packets follow
separate paths in the network, allowing the latter to avoid
possible corruption-loss problems (Fig, 2). However, asym-
metric configurations can cause significant problems for TCP. -
For example, it is well known that slower reverse channels
can induce deleterious effects such as ACK loss and congpres-
sion {5], since ACK packets can.get dropped or queued
behind larger data packets. Here throughputs can be greatly

" reduced, and sample results in [5] indicate exponential

decrease for increasing asymmetry. Additionally, large asym-
metries between the forward and reverse channel rates can
worsen forward buffer congestion significantly since linec-rate
bursts are.much larger [3, 16].

IEEE Communications Magazine * July 1999

" 85

ONBOARD CONSIDERATIONS

Payload size and power budgets usually limit the amount of
onboard buffering and processing capacity in satellite nodes
[2]. Compounding this issue is the fact that satellites usually
represent longer-term investments and hence must interoper-
ate with inevitably improving terrestrial technologies (worksta-
tions, modems, even application protocols, etc). Therefore, it
is very desirable to prevent the satellite node itself from
becoming the bottleneck, One way of achieving this is to limit
congestion effects to the terrestrial network component,
essentially relegating satellite nodes to performing simple
“data relay” functions. Ancther solution, however, is to pro-
vide advanced traffic management features onboard safellite
nodes. Contrary to expectations, simply providing ample
buffering (i.e., order of bandwidth delay products) may not
suffice [10]. The reason is that larger buffer sizes can result in
queuing delays of the same order as propagation delays and
thereby increase round-trip delay variability. This, in turn, can
cause premature timeoufs and reduce bandwidth utilization.
Improved onboard features are considered subsequently.

LiINK-LAYER ENHANCEMENTS

As discussed previously, link error rates are a major concern
in satellite TCP, and as a result designers have proposed a
variety of soluiions. However, since these schemes are not
particularly TCP-specific, they are only briefly discussed here
(see [1, 2] and references therein for full details).

FORWARD ERROR CORRECTION SCHEMES

One means of improving link conditions is to simply increase
transmitter power and/or use larger antennas. However, this is
a rather expensive remedy and more workable link-level solu-
tions are commonplace. A variety of forward error correction
(FEC) encoding schemes have been proposed for data corrup-
tion, ranging from well-known convolution codes to concatenat-
ed codes [1]. The level of encoding used depends on the

desired link BER, the prevailing link/atmospheric conditions,
and even traffic type. Many advanced coding schemes also
make use of bit interleaving to reduce the effects of burst
errors, by spreading out the errors over multiple cells (packets).
This can improve the effectiveness of existing error checksums
and single-bit error correction mechanisms. Typically, good sys-
tems can achieve BER values over the 10-7 range, resulting in
cell (packet) error rates of 10® or better. However, increased
encoding complexity can slow down satellite modems and
reduce bandwidth efficiency, since data redundancy incurs
added overheads. Hence, many advanced satellite networks
support a range of encoding schemes for different types of traf-
fic and network conditions. For example, reliable transmission
of delay-sensitive streams usually requires the highest level of
encoding/interleaving, and more delay-insensitive applications
can vse reduced encoding levels. In addition, many state-of-the-
art satellite devices also use data compression techniques to
counteract bandwidth inefficiencies caused by encoding [6].

AUTOMATIC REPEAT REQUEST PROTOCOLS

Various link-level refransmission schemes, termed automatic-
repeat-request (ARQ) [1] protocols, have been developed for
satellite networks. Senders segment user datagrams into smaller
link-layer “mini-packets” and assign sequence numbers to them
before transmission. These sequence numbers are acknowl-
edged by receivers and allow the sender side to retransmit any
corrupted mini-packets using a variety of approaches, such as
stop-and-wait, go-back-N, or selective-repeat. All ARQ schemes
add to channel delay and delay vartability, and generally are not
well suited in high BER environments due to excessive retrans-
mission delays. Furthermore, the more rudimentary link-layer
protocols (go-back-N, stop-and-wait) will yield even longer
average link delays and can give reduced TCP throughputs
when compared to selective repeat schemes. Although selective
repeat ARQ schemes are most efficient, more processing com-
plexity is necessary in the modems. The detailed interaction
between TCP and such ARQ protocols needs further study. In
particular, ARQ retransmission timer granularities need to be

Sateflite network

M Figure 2Asymmetnc féﬁer;réACK c-hann.el cénﬁgﬁraiibn. i

66

IEEE Communications Magazine * July 1999

carefully tuned to avoid destructive interactions with TCP’s own
timeout mechanism (e.g., muitiple retransmissions).

IMmPROVED TCP VERSIONS

Recognizing the increasing importance of satellite TCP, the
Internet Engineering Task Force’s (IETF’s) TCP over Satel-
lite (tcpsat) working group has addressed many of the issues
in detail. The resulting proposals range from moderate TCP
alterations to more comprehensive data recovery techniques
(see |3, 6] and IETF RFC 1072 for comprechensive surveys).
Moreover, the design of newer, improved TCP versions has
also been widely studied in the context of high-speed broad-
band and wireless networks. Many findings from these areas
can also be applied to satellite networks. Some of the propos-
als are now reviewed.

BasiC TCP ENHANCEMENTS

One problem with TCP is that its default window size represen-
tation is limited to 16 bits, and this value is insufficient for
satellite bandwidth-delay products. Since required window sizes
can casily exceed the maximum allowable 65,536 bytes, this lini-
its maximum goedput to roughly 1 Mby/s, below T1 speeds. Sim-
ply assigning more bits for the TCP window size is not feasible
since associated changes to the header pose many interworking
complications with older versions. The window scaling option
(IETF RFC 1072) addresses this issue, allowing connections to
negotiate a scaling factor at startup. This factor is normally a
power of 2 and allows for window sizes up to 32 bits in length,
more than adequate for satellite networks. However, increased
window sizes can also cause sequence number wraparound
problems and require added profection against wraparound
sequence ntmbers (PAWS) mechanisms. Both these features
are essential for satellite TCP, especially in GEO systems.

Large round-trip delay variability can yield inaccurate
round-trip time estimates, which will inevitably reduce the
efficiency of TCP’s loss detection mechanism, possibly leading
to congestion collapse. One shortcoming is that TCP’s timer
mechanism only clocks a single segment at a time, resulting in
too coarse a sampling rate for dynamic conditions and large
window environments, especially if buffering delays are of the
same order as propagation delays. The proposed TCP echo
option, which is signaled at startup {i.e., SYN handshake),
solves this problem by associating a sender-side timestamp
with each segment, Receivers echo these timestamps, and pro-
visions are given for handling delayed ACK timers and non-
contiguous sequence numbers {i.e., dropped segments); see
IETF RFC 1072. The echo option is crucial for TCP satellite
networks considering the farger delay variability and increased
buffering requirements.

Larger TCP segment sizes will help open up the slow-start
congestion window faster in long-delay environments. To this
end, the well-known path maximum transmission unit (MTU)
discovery approach can be used, essentially probing the net-
work for the maximum IP (TCP) packet size which can be sup-
ported along the end-to-end path. Although the delays incurred
during the probing stage can be on the order of multiple
round-trip times, MTU discovery can yield good benefits if
maximum segment sizes arc not known a priori. Furthermore,
storing the results of MTU discovery can reduce latencies for
future connections (in relatively static topologies). Although
some have argued against MTU discovery, stating that larger
packets are more prone to corruption losses, improving FEC
schemes and ARQ protocols are lessening this concern.

Since the slow start phase relies on returning ACK packets
to increase window sizes, there is a direct dependence between
round-trip times and bandwidth efficiency. To address this

issue, researchers have proposed increasing the default window
size, allowing more packets to be sent at startup, thereby trig-
gering more ACKs and hence faster growth. In addition, a
startup window size of two or more segments will also eliminate
any additional delays caused by the delayed ACK timer. The
exact choice of the initial window size is an open issue. Overly
large vahies can be too aggressive and actually worsen packet
drop rates. However, studies have shown that an initial value of
four segments improves startup times significantly, without a
corresponding (noticeable} increase in the packet loss (see [3]
and references therein); an analytical expression for startup
window sizes is also given. Results show savings of up to three
round-trip times plus the ACK delay timer interval. Additional-
ly, the “extra” round-trip delay incurred by the three-way TCP
handshake can also be avoided by allowing senders to transmit
data with the first (SYN) segment (IETF RFC 1644). Satellite
TCP can benefit significantly from such modifications.
Continuing the above reasoning, increasing the slow-start
threshold from its default value of 65,536 bytes is also recom-
mended for long-delay high-bandwidth paths. This will prevent
overly conservative congestion avoidance window growth and
improve ramp-up times. Ideally, this threshold should be tuned
contingent on the bandwidth-delay product and amount of
reverse-channel asymmetry ([16] presents some analytical
results). Increased throughput can also be achieved by modify-
ing the ACK generation/window increase procedures. Acknowl-
edging every segment (versus every other segment) or using
byte-counting techniques at the sender can expedite window
growth. The latter technique increments the window based on
the number of newly acknowledged bytes, independent of the
receiver’s ACK generation rate. However, increased burstiness
can result here, and further considerations may be necessary to
prevent large line-rate bursts (i.e., limited byte counting [17]).
Other modifications to TCP have also been proposed in
the more general literature to improve performance in large
bandwidth-delay networks [4]. A notable area is the design of
newer, improved congestion control/avoidance algorithms,
such as Vegas [5] and NewReno [4)]. The former makes signif-
icant changes to the linear increase congestion avoidance
phase, allowing senders to increase/decrease/maintain window
sizes. TCP Vegas uses delay-sensing techniques to control
window increases, and a new retransmission timer mechanism
is vsed to reduce the inaccuracies of coarse timer granulari-
ties. Although the details are too lengthy to consider here,
results in terrestrial networks indicate over 30 percent
improvement in throughput and much fewer losses than TCP
Reno. However, TCP Vegas can require substantial tuning in
satellite networks [3]. Meanwhile, TCP NewReno propoeses an
improved fast recovery phase to handle multiple losses, entail-
ing moderate sender-side changes. Specifically, a more aggres-
sive retransmission policy is used to maintain both forward
transfers and returning ACK streams (i.e., “self-clocking”).

SELECTIVE ACKNOWLEDGE ENHANCEMENTS

A major shortcoming of TCP (Tahoe/Reno) continues to
be its vulnerability to multiple losses, which can cause it to
lose its “self-clocking” property and timeout [7]. Ideally, it is
desirable to prevent unnecessary window reductions and only
retransmit corrupted/dropped packets. In long-delay networks,
such functionality can help improve bandwidth efficiency, as is
the case with the International Telecommunication Union —
Telecommunication Standardization Sector (ITU-T) SSCOP
protocel for satellite ATM [1]. Along these lines, a significant
enhancement to the TCP protocol has been developed,
termed selective acknowledgment (i.¢., TCP SACK, IETF RFC
2018). TCP SACK is a data recovery algorithm [7], where
receivers can selectively indicate which blocks (segments)

TEEE Communications Magazine * July 1999

67

er, more elaborate ACK handling schemes that push out
“older” ACK packets (i.e., drop-from-front strategies [16])
or even maniputate ACK sequence numbers (i.e., ACK
filtering schemes [3]) can also be of help here. These
schemes tend to keep and return ACK packets that con-
tain higher sequence numbers, improving overall good-
puts. Reducing the receiver’s ACK generation rate has
also been suggested, namely an “ACK-every-k” strategy
[5] where k > 2. Although the above techniques can
reduce the loading on a slower ACK channel, at the
same time they can significantly lower startup window
growth. This problem can be remedied using byte-count-
ing mechanisms {as described previously), although
increased TCP burstiness can result, requiring further

transfer).

were not received. This allows senders to explicitly retransmit
only these omissions and can significantly reduce unnecessary
retransmissions. Furthermore, careful consideration has been
made to also allow incorporation of existing congestion con-
trol features, such as slow start, congestion avoidance, and fast
recovery/retransmit (i.e., Reno+SACK {4, 7]). Nevertheless,
excessive packet losses can cause SACK to run out of ACKs,
and again, the basic timeout mechanism must be deployed
here. SACK uses TCP headers to carry information on the
missing blocks, although the current size only has space for
indicating three regions.

Results show that TCP SACK performs very well in long-
delay environments with moderate losses (under 50 percent of
the window size [7]}, retransmitting all lost segments within
the first round-trip time after fast recovery is triggered. Some
comprehensive studies state that the SACK feature signifi-
cantly reduces timeouts and is not overly aggressive when
competing with non-SACK versions [8, 9]. Average through-
put improvements are measured at anywhere from 15 to 50
percent over various terrestrial Internet settings. The buffer-
ing requirements for maximum bandwidth utilization are also
unchanged from regular TCP [4, 15], on the order of band-
width deldy products. Nevertheless, despite these improve-
ments, under extreme link error rates (about 10-%), even TCP
SACK is unable to prevent excessive timeouts, and average
TCP throughputs are below 15 percent [4]. The SACK option
requires significant modifications to both the sender and
receiver protocol stacks.)

The forward ACK (FACK) [3, 7] proposal is yet another
improvement using the information provided by the SACK
option. The intent is to more clearly decouple the congestion
control (i.e., when and how much to send) and data recovery
(i.e., what to send) algorithms [7]. FACK introduces several
new variables to the implementation to more accurately track
the amount of outstanding data in the network and maintain
- TCP self-clocking with multiple losses. By using this informa-
tion to control emissions, FACK is shown to be less bursty
than TCP SACK and more robust against heavy losses [3, 7].
Additional results here show that both SACK and FACK also
provide good improvements for networks with reverse-direc-
tion congestion (i.e., ACK compression effects). Although
more investigation is necessary for noisy satellite links, FACK
is expected to provide good performance gains.

ASYMMETRY CONSIDERATIONS
An effective solution for asymmetric channel problems is
ensuring adequate reverse direction bandwidth and using suf-
ficiently large packet sizes [16]. Otherwise, increased forward
buffering is required to handle larger line-rate bursts. Howev-

W Figure 3. Bandwidth usilization with multiple TCP sessions (bulk

mechanisms to limit line-rate bursts. A more difficult

problem with lower ACK generation rates, however, is

the reduced effectiveness of fast recovery {and even

SACK) algorithms, since fewer ACKs are generated.
The use of selective negative acknowledgements (SNACKs)
has been proposed as a remedy, with a modified TCP source
simply retransmitting NACK blocks (i.e., not relying on the
fast-retransmit mechanism to detect losses). Results here
show improved linear throughput degradation for increasing
asymmetry [5]. Additionally, since many fields in the TCP and
IP headers remain constant over the life of a flow, it is not
necessary to repeatedly include them in all transmissions.
Well-known header compression techniques can reduce the
volume of data on bandwidth-constrained (reverse) links (see
{3, 5] for an indepth treatment).

INTELLIGENT INTERWORKING

Network designers have also looked at intelligent TCP inter-
working to improve end-user performance (so-called perfor-
mance enhancing proxies, PEPs). Although there are many
proposals, only some solutions with application in satellite
networks are discussed. Many of these schemes are not mutu-
ally exclusive, and thus a rich set of possibilities exists for
developing further improvements.

MULTIPLE TCP SESSIONS

One method of improving bulk transfers over satellite paths is
to instantiate several parallel TCP sessions and stream data
over them. Results show significant performance improve-
ments in noisy satellite environments compared to a single
connection (utilization, transfer times, etc). In addition, con-
nection ramp-up times are greatly reduced by essentially
increasing the initial window size to N segments, where N is
the number of TCP connections. However, this approach
results in an aggregate “mega-connection” which is less
responsive to packet losses than is a single TCP connection
[18] (i.e., “non-TCP-like” behavior). This is not difficult to
see, since a corrupted packet only causes one TCP subconnec-
tion to reduce its window. Therefore, some have argued that
multiple TCP sessions can possibly lead to congestion collapse
in public networks [3]. Nevertheless, in private satellite net-
works where link errors are more the concern, violating
“TCP-friendly” behaviors may be more tolerable. It should
also be noted that throughput fairness levels between differ-
ent bulk (i.c., application-level) transfers, each using multiple
TCP connections, may be more difficult to control since all
the subconnections will not see equal loss rates. Several
anthors have described the effect of multiple TCP sessions as
inducing “SACK-like” behavior on the aggregate transfer;
moreover, results show that performance improvements are
actually better than those with a single TCP SACK session
[11]. This is in part due to the aforementioned aggressive

68

IEEE Communications Magazine « July 1999

source policy. Furthermore, since
multiple sessions imply smaller oper-
ating window sizes per session, burst
losses are less likely to only affect a
given flow. This “spreads out” the
burst losses over multiple TCP con-
nections, improving the effectiveness
of TCP Reno’s fast recovery/retrans-
mit algorithm.

To reveal these performance bene-
fits more ciearly, sample simulation
results with this approach are present-
ed for various BERs on an MEO link
(¥Fig. 1). The one-way forward propa-
gation delay is set to 120 ms, and the
reverse channel is restricted to 200
kby/s. The link rate is fixed at 10 Mb/s
(ignoring FEC overheads), and no
ARQ link protocols are used. Multi-

TCP s0urce

~Satellite hetwork

) TCP des'hnatlon

'E:“WP Reno j@ l———————————b Lmk Ieve[protocol ——! ’-{—'.T-CP-_.SEF?O' : .

lmproved Imk layer protocol
i ofeven TCP versnon ’

"Spooflng endpomts iE

Native. (Iegacy) TCP versions
et chent desktops

ple TCP Reno sessions are used along
with a single TCP SACK connection,
The window scaling/PAWS options
are enabled and the TCP segment size is fixed at 9140 bytes
(ATM valie). Assuming limited onboard storage, most of the
buffering is placed at the access devices, roughly 300 kbytes,
close ta the round-trip bandwidth-delay product. The average
bandwidth utilization results for bulk TCP transfers are shown
in Fig. 3, measured over 30 s runs. A clear improvement is
seen with increasing N for BER values at or above 10-7. As
expected, the results confirm that more sessions are required
for higher BER values. Also, five plain TCP connections out-
perform the TCP SACK version in all cases (Fig. 3). However,
lower BER values near 10-9 still yield bandwidth utilization
below 25 percent, confirming the results in [11]. In fact, even
with 10 connections, only several congestion drops occurred for
BER values of 10-7. This indicates that high BER rates can
actually reduce buffering requirements.

In general, multiple connections impose additional complexity
in the protocol stacks, since user files must be proportioned
between TCP streams (i.e., file striping [11]). Careful considera-
tions are necessary here, since all TCP connections will rarely
cxhibit similar throughputs. Simply using fixed partitioning
between connections can result in one connection stowing down
the aggregate transfer process. Therefore, it is much more effec-
tive to divide the file into smaller blocks and dynamically assign
these blocks to connections which are free to transmit them. This
entails further complexity; moreover, the choice of how many
TCP connections to use (for a given file size, link condition, MSS
value, etc.) needs further study. Along these lines, it is felt that
multiple TCP SACK sessions will yield even better results. In
addition, the aforementioned “aggressive” mega-source behavior
can be remedied by modifying the window growth to use shared
congestion information between the parallel TCP sessions, there-
by achieving more “TCP-like” transfers [18].

LiNK-LAYER INTERWORKING

Various “TCP-aware” interworkings can also be used for lossy
satellite links to help discern more clearly between congestion
and corruption loss. Within the context of terrestrial wireless
TCP, such schemes have shown good performance improve-
ments by incorporating corruption loss infermation into the
feedback. These include using link error feedback schemes,
such as explicit loss notification (ELN} in ACK packets, ACK
snooping, and multiple/partial ACKs [3, 5 and references
therein]. Similarly, researchers have also integrated link-layer
corruption indications more directly into modified satellite
TCP stacks. For example, the Space Communications Protocol

I F;gure 4. TCP/IP .sazelltfe link spooﬁng conﬁgum.tzon

Standards-Transport Protocol (SCPS-TP) [3] changes TCP’s
default window-reduction property upon loss detection by
using a broader loss definition, namely congestion, corruption,
or even connectivity. Remote base stations echo congestion-
experienced or link-outage ICMP messages, in addition to regu-
lar duplicate ACK packets, and modified TCP sources use this
information to avoid unnecessary window reduction. This gives
very good improvements for higher BER channels [5], although
some may argue that it violates the layering approach.
Spoofing refers to techniques which “split” TCP connec-
tions between the (end) source and destination clients into
two or more parts [3]. Essentially, this breaks the end-to-end
semantics of TCP by creating muitiple connections terminated
at the designated (access) nodes. For example, Fig. 4 shows a
setup where TCP Reno clients are “spoofed” at satellite
access nodes using more advanced link-layer corruption-loss
handling schemes. These can include link-layer ARQ proto-
cols or even specialized TCP versions (SACK, FACK, etc.) on
the satellite portion of the path, providing end users with
improved throughputs without costly upgrades to their simpler
TCP stacks (i.e., hiding link losses). (Note that although Fig. 4
shows the use of improved TCP versions as “link-layer” solu-
tions, they were originally intended for end-to-end improve-
ments). In private networks where many design features are
under the operator’s control, TCP spoofing can yield good
improvements. For example, a priori knowledge of the link
conditions and bandwidth/buffering capacities can allow for
full line-rate emissions by the sender side, avoiding sluggish
TCP slow start ramp-ups altogether. In addition, by segment-
ing the end-to-end TCP session into multiple smaller ones,
improved responsiveness can be attained, akin to the virtual
source/virtual destination (VS/VD) properties of the ATM
available bit rate (ABR) service category. Quantitative studies
of this effect and TCP spoofing in general are worth pursuing
further. Nevertheless, TCP spoofing imposes significant per-
flow complexity and added buffering overheads at the access
nodes, since they must act on behalf of the end clients, In par-
ticular, control-plane signaling issues arise, since the access
nodes must “trap” TCP connection start sequences (SYN-
ACK handshakes) and then spawn intermediate connections,
The associated overheads here can be notable, especially if
the flows are short-lived. In addition, the interaction between
different TCP versions on the end-to-end transfer process is
not well understood and needs further study. Future aggrega-
tion techniques which merge several client flows onto fewer,

IEEE Communications Magazine « July 1999

69

Onboard:satellite
eongestion:(small)

good rate control. In this regard, other
TCP control schemes still require buffer-
ing on the order of round-trip delays [4,
13]. In addition, per-flow (or per-class)
ACK buffering can improve bandwidth
fairness between competing TCP trans-
fers. The implementation complexity of
ACK pacing ranges from moderate to
complex. Namely, buffering ACK pack-
ets poses nominal storage overheads
(due to their relatively small size, around
40 bytes). However, advanced schemes
can require per-flow accounting and even
ACK scheduler mechanisms.

To show some benefits of ACK pac-
ing, the enhanced ACK pacing (EAP)

S e
" destination

s

[12] scheme is tested using an MEQ-link

scenario. The forward channel is 50 Mb/s

M Figure 5. TCP/IP ACK control in a satellite network,

preferably pre-established “spoofed” link-layer connections
can also be designed to reduce signaling overheads/latencies.

ACK CONTROL SCHEMES

Recently researchers have tried to improve TCP performance
over ATM more directly by using ACK contfrol schemes [12,
13]. Since there is a large timescale mismatch between the
TCP feedback loop (hundreds of milliseconds) and ATM con-
gestion control (milliseconds), the intention here is to induce
a tighter coupling (Fig. 5). These schemes are basically con-
gestion control techniques and assume that TCP sources can
congest the network, implying adequate link FEC and/or mul-
tiple TCP sessions. In general, two such schemes are of note,
namely those delaying returning ACK packets (ACK pacing
£12]) and those modifying the receiver window field in return-
ing ACK packets (receiver window modification [13]). A bene-
fit of ACK control is that no changes are necessary for TCP
protocol stacks, and only sender-side complexity is incurred.
Moreover, ACK control schemes are not ATM-specific and
are very well-suited for satellite networks.

and has 120 ms delay, whereas the
reverse channel is 1.5 Mb/s and has 100
ms delay. Also, the link BER values are
varied dynamically between the 10-% -
109 range, implying good FEC. The results are presented for
three competing bulk transfers, each using the previously
defined multiple connections approach, varying between one
and three (sub)connections. The access delays (TCP worksta-
tions to ASIU) are fixed at 5 ms, and the ASIU buffering
capacity is varied from fractional to full bandwidth-delay
product range (roughly 30,000 cells). The TCP performance is
measured using the multiple connections approach {with up to
three subconnections), whereas ACK pacing only uses a single
connection. The bandwidth utilization results (Fig. 7) indicate
that ACK pacing provides good savings in buffering capacity
in addition to improved utilization (over 20 percent on aver-
age). For example, even with an access buffer size of only 10
percent of the bandwidth delay product, average link utiliza-
tion is still about 35 percent versus about 65 percent with TCP
Reno. To gauge bandwidth fairness, average throughputs are
measured. Specifically, each user should receive about 15
Mb/s goodput (after accounting for ATM cell and [P header

Specifically, returning ACK packets can be con-
trolled at the ground station’s IWU contingent
on congestion levels at the forward (outgoing)
data buffers (Fig. 5). By concentrating buffering
to the edge of a noisy link, onboard processing
requirements can also be reduced. However,

FCP -
source(s) A

ACK control schemes assume relatively good
rate control in the core (i.e., in this case satel-
lite) network, essentially abstracting the net-
work to a fairly constant bandwidth “pipe” [12].

ACK pacing (ACK spacing {3]) can improve

with TCP/IP ACH

TCP’s interaction with more advanced ATM
transport methodologies, such as per-connec-
tion quening and feedback flow control [12 and
references therein]. ACK pacing exploits the
fact that TCP’s emission behavior (window
growth) is controlled by the rate of returning
ACK packets [16], and hence appropriately
delays returning ACK packets to control for-
ward access congestion. Figure 6 presents a
simplified overview of such a device, where the
ACK control unit performs the necessary func-
tions. A key benefit is that ACK pacing can
provide good buffer size reduction for bulk

To TCP

From TCP

_. QU ree{s)

4 ACKﬁer(s) .ACK packets

Incoming: E;_
packets ".|;

Data packets

E_ source(s)‘7

Data buffer(s) ,* g

T
i

Forward | |

TCP transfers, since queue buildups are more

dependent on access network delays, assuming

| Figure 6.4n oveﬁiew. of ﬁ TC’PACK pacing module —

70

IEEE Communications Magazine * July 1999

overheads). The average deviation from this value is
plotted in Fig. 8 for varying buffer sizes, and again,
ACK pacing yields very small deviations, about 2 per-
cent. Althongh TCP shows improved fairness with much
larger buffer sizes, its throughput deviation does not
improve much beyond 25 percent (i.e., 3 Mby/s, Fig. 8).
To illustrate ACK pacing performance improvements
mere closely, the ASIU queuc length is plotted in Fig.
9, showing tight control about a prespecified buffer
threshold of 1500 cells. The received-byte counts for all
three bulk transfers are plotted in Fig. 10, and from the
slopes it is clear that all of them are getting equal
throughputs. In general, extensive tests show that ACK
pacing throughputs are usually much better (and not

.:.:B.éndwidtﬁ _utiliz:a{ioh S

112,000

6000 - 9000
. ASIU ‘butfer 5|ze (cells)

lower) than those with basic TCP for a given buffer size.
Since the above results are for a 50 Mb/s link rate,
buffer savings will increase further for larger link rates.

- Flgure 7. Bandwzdth utilization with ACK pacmg/mulrmle CORHECHions.

Although these results are encouraging, further study is
necessary, especially with bursty transfers.
Window-scaling techniques have also been tested at
the network edge to modulate source activity [13].
Specifically, the receiver window fields of returning
ACK packets are over-written (reduced) by congested
access nodes to control emission behaviors. Like ACK
pacing, these schemes assert more direct control over
TCP connections. Although core (not access) buffering
requirements are reduced, some of these schemes
require knowledge of individual connections’ round-trip
delay times and end-to-end bandwidth levels [13]. Mea-
suring these accurately in dynamic environments may be
difficult. In fact, the bandwidth fairness levels and
queue behaviors will vary depending on the accuracy of
these estimates, making them less robust than ACK
pacing schemes. Nevertheless, receiver window control

'.Throughpu:tt deviation (Mb/s) C

(V=1 |

" 12,000

saoo ER
ASIU buffer stze (ceils)

'9000 S

has some benefits, especially for controlling bursty
sources. Therefore, future work could investigate com-
bining the two approaches. It should be noted, however,
that IP security concerns may complicate TCP header modifi-
cation, and this issue needs further investigation.

IMPROVED SATELLITE FEATURES
Satellite systems are now beginning to support improved access
and onboard traffic management features [2]. In this context, a
significant amount of work has been done on TCP transport
over satellite ATM networks [4, 10, 14, 15] using advanced
scheduling, buffer management, and even feedback flow control

B Flgure 8. Avemge !hroughput devmtton ﬁ'am ideal 15 Mb/s fazrshare

(ABR) algorithms. In general, such features can improve TCP
performance, in terms of both throughput and fairness,
although TCP modifications, especially SACK, provide more
notable performance gains for longer delays [4]. However,
many ATM-related studies have not considered the effects of
link error rates. It is likely that smaller buffer sizes may give
roughly the same link utilization performance as larger values
in the presence of increased link error rates, since link losses
tend to reduce TCP emissions anyway. Another issue, ensuring
bandwidth fairness between competing applications
under noisy link conditions, may be much more difficult

due to corruption-induced losses. The existing work is

now briefly discussed, and interested readers are referred
to [4] for more thorough treatment.

Many buffer allocation schemes have been proposed
to improve throughput and fairness for TCP flows in
more general packet network settings. Although simpler
schemes such as partial packet discarding (PPD) and
random early discard (RED) can improve throughput
significantly, usually more advanced renditions are

_ Queﬁé _Ié.ng__th':(céils): .

required to improve fairness. These schemes use per-
flow accounting to perform intelligent drops and are
applicable to various ATM service categories — for
example, fair buffer allocation (FBA) or flow random
carly discard (FRED); see [4] for full taxonomy. Addi-
tionally, for ATM networks, the guaranteed frame rate

Tlme.(s) .

(GFR) category can further improve fairness over the
simpler unspecified bit rate (UBR)) category by provid-
ing rate guarantees. Nevertheless, UBR or GFR buffer

M Figure 9, ASIU queue length wzth ACK pacing (1500-cell tkreshold)

allocation solutions cannot fully exploit larger access

IEEE Communications Magazine * July 1999

A

REFERENCES

[1}1. Akyildiz and S. Jeong, "Satellite ATM Networks: A Survey,”
{EEE Commun. Mag., vol. 35, no. 7, July 1997, pp. 30-43.

[2]). Gilderson and J. Chekaoui, “Onboard Switching for ATM via
Satellite,” IFEE Commun, Mag.. vol. 35, no. 7, July 1997, pp.
66-70.

[3] M_ Allman et a/., “Ongoing TCP Research Related to Satellites,”
Internet draft, draft-ietf-tcpsat-res-issues-08.txt, June 1999,

[4] R. Goyal et al., “Traffic Management for TCP/IP Over Satellite
ATM Networks,” IEEE Commun. Mag., Mar. 1999, pp. 56-61.

[5] R. Durst, G. Miller, and E. Travis, “TCP Extensions for Space
Communications,” Wireless Networks, Oct. 1997, vol. 3, no. 5,
pp. 389-403.

[6] M. Allman and D. Glover, “Enhancing TCP Over Satellite Chan-
nels Using Standard Mechanisms,” Internet RFC 2488, Jan.
1999,

[7] M. Mathis, and J. Mahdavi, "Forward Acknowledgment: Refin-
ing TCP Congestion Control,” Proc. ACM Sigcomm 1996, Stan-

W Figure 10. Received byte counts with ACK pacing.

buffering and usnally imply increased storage/processing com-
plexity at all network nodes (even onboard satellite nodes).
Furthermore, results in terrestrial WAN (and satellite) net-
works are not as good, since window and buffer sizes are of
the same order [4]. Some buffer management schemes can also
exhibit a strong trade-off between link utilization (throughput)
and fairness levels for TCP Tahoe/Reno [10]. More complex
solutions can use ATM ABR flow control schemes,. If access
nodes have such feedback capabilities, the effects of long one-
way propagation times can be reduced (VS/VD feature), and
more important, increased access buffering can improve
- throughput and fairness. Results with advanced explicit rate
(ER) ABR schemes over lossless satellite links show reduced
buffering requirements for multiple flows compared to UBR
and GFR [4, 10]. Findings with simpler binary feedback
schemes, namely explicit forward congestion indication
{EFCI), are not as good in terms of throughput and fairness.
In general, advanced ABR ER flow control capabilities can
greatly reduce storage requirements onboard satellite and
downstream (receiver) nodes. Coupling ABR flow control with
ACK control can potentially provide further gains.

CONCLUSIONS

As satellites begin to play an increasingly important role in
modern communication infrastructures, there is a growing
demand for them to support a broader range of user ser-
vices. An important concern in communication networks is
the reliable transport of data traffic, and TCP/IP protocol
has emerged as a widely used solution. However, many fea-
tures of satellite networks pose significant challenges for
achieving good TICP performance. Among other issues, these
include long delays, increased bit error rates, network asym-
metries, and onboard restrictions, Effective solutions to
these problems are necessary to ensure reliable end-to-end
data delivery.

Many schemes have been proposed for improving satellite
TCP performance. On a lower level, improved link-level
encoding and access protocols can reduce susceptibility to link
error rates. More direct TCP-specific solutions also exist.
These include basic parameter tuning/extensions, improved
timer mechanisms, and advanced data recovery procedures
such as SACK, FACK, and NewReno. Other schemes such as
link-layer interworking techniques or advanced ACK control
algorithms can also bring benefits. The latter can provide
improved TCP throughput and fairness and also reduce buffer
size requirements. Overall, a rich variety of solutions have
been developed for sateliite TCP, and forthcoming work will
continue to meet the challenges in this important area.

ford, CA, Aug. 1996,

[8] K. Fall and 5. Floyd, “Simulation-based Comparisons of Tahoe,
Reno, and SACK TCP,” Comp. Commun. Rev., vol. 26, no. 3,
July 1996, pp. 5-21.

[9] R. Bruyeron, B. Hemon, and L. Zhang, "Experimentations with TCP
Selective Acknowledgment,” ACAT Comp. Commun. Rev., vol. 28, no. 2,
Apr. 1998, pp. 54-77.)

[10] 5. Kalynaraman et al., “Buffer Requirements for TCPAP over ABR,” Proc.
ATM "86 Wksp., San Francisco, CA, Aug. 1296,

[11] M. Allman ef &/, “An Application-Level Solution to TCP's Satellite Inef-
ficiencies,” Proc. Tst Int’l. Wksp. Satellite-Based Info. Services, Nov.
1996.

[12] N. Ghani, “Enhanced TCP/IP ACK Pacing for High Speed Networks,”
Proc. 16th Int’]. Teletraffic Cong., Edinburgh, Scetland, June 1999,

[13] R. Satyavolu, K. Duvedi, and 5. Kalyanaraman, "Explicit Rate Control of
TCP Applications,” ATM Forum-Traffic Management 98-0152, Feb.
1998.

[14] R. Goyal et al., “Analysis and Simulation of Delay and Buffer Require-
ments of Satellite-ATM Networks for TCP/IP Traffic,” work in progress.

[15] M. Allman, "TCP Performance Over Satellite Links,” Proc. ComSoc
Wksp. Comp.-Aided Modeiing, Analysis and Design of Commun. Links
and Networks, Mclean, VA, Oct. 1996,

[16] T. Lakshman et al., "Window-Based Error Recovery and Flow Control
with a Slow Acknowledgement Channel: A Study of TCP/IP Perfor-
mance,” Proc. IEEE INFOCOM 1997, Kobe, Japan, Apr. 1997.

[17]1 M. Allman, "On the Generation and Use of TCP Acknowledgments,”
ACM Comp. Commun. Rev., Oct. 1998,

[18] H. Balakrishnan et al., “TCP Behavior of a Busy Internet Server: Analysis
and Improvements,” Proc. IEEE INFOCOM 1997, Kobe, Japan, Apr.
1997.

BIOGRAPHIES

NasIk GHaN [M] {nasir.ghani@research.nokia.com) received a B. Eng. degree
in computer engineering from the University of Waterfoo, Canada, in 1991,
an M. Eng. degree in electrical engineering from McMaster University, Hamil-
ton, Canada, in 1992, and a Ph.D. degree in electrical and computer engi-
neering from the University of Waterloo, Canada, in 1997. From 1992 to
1993 he was employed at IBM Canada as a systems analyst and subsequent-
ly, from 1993 to 1994, as a design engineer at Motorala Codex, Canada. Cur-
rently he is a senior research engineer in the Broadband Networks group at
Nokia Research Center, Burlington, Massachusetts, investigating end-to-end
services provisioning over IP, ATM, and optical networks. His research inter-
ests include traffic management, flow control, routing, scheduling, 1P inter-
networking, TCPAP, fault management, and optical networks.

SUDKIR DIXIT {5M] {sudhir.dixit@research.nokia.com) received a B.E. degree
from Maulana Azad College of Technology (MACT), Bhopal, India, an M.E.
degree from Birla Institute of Technology and Science (BITS), Filani, India,
and a Ph.D. degree from the University of Strathclyde, Glasgow, Scotland,
all in electrical engineering. He also received an M.B.A. degree from Florida
Institute of Technology, Melbourne. He joined Nokia Research Center,
Burlington, Massachusetts in 1996, where he is responsible for managing
research and development in broadband networking, specializing in such
areas as ATM, Internet, and all-optical networks. From 1991 to 1996 he
was a broadband netwaork architect at NYNEX Science and Technology
{now Bell Atlantic). Prior to that he held various engineering and manage-
ment positions at other major companies, such as GTE, Motorola, Harris,
and Nortel. During his career, he has acquired experience in such diverse
areas as image processing, compression, computer graphics, sighal process-
ing, telecommunications, computer networks, and VLS design. He was a
guest editor for a special issue of IEEE Network on digital video dial-tohe
networks published in Oct/Nov 1995, and a guest editor for a feature topic
on service and network interworking in a WAN environment published in
{EEE Communications Magazine in June 1996,

72

IEEE Communications Magazine * July 1999

