

Active antennas for mobile terminals

Dr. L. Richard

DLR Oberpfaffenhofen

Institute of Communications and Navigation

Dr. L. Richard

ATM-Sat Workshop, June 19th 2002, Berlin

1

Contents

* Source: Institut für Hochfrequenztechnik, Technische Universität Braunschweig Partner associated with DLR in the complementary project SANTANA (Smart ANTennA termiNAI)

1 ATM-Sat specifications

Low Earth Orbit (LEO) satellite system

Parameter	Value
Uplink-frequency	30 GHz
Downlink-frequency	20 GHz
Bandwidth (antenna)	500 MHz
Polarisation (radiation)	Circular
Antenna gain	35 dBi
Radiation pattern beamwidth (at -3 dB)	~ 5°
Side lobes level	< -20 dB
Cross-polarisation	< -20 dB
Maximum scan angle	60°
Antenna beams	1 transmit beam 2 receive beams

2 Passive printed antenna design 2.1 Guiding principles and goals

Thickness of the substrate supporting the radiating elements: selection criteria

- standard thicknesses
 of commercial substrates
- min: minimum relative thickness required to meet the targeted bandwidth
- max: maximum relative thickness recommended to avoid the occurrence of a scan blindness within the scan angle range
- Targeted bandwidths = 1 GHz

 \Rightarrow

2.1 Guiding principles and goals

minimum relative distance between patch edges to limit mutual coupling effects

square patch dimension estimated by cavity model

ATM-Sat Workshop, June 19th 2002, Berlin

a: element spacing in a conventional array a: subarray spacing if elements are sequentially rotated

 λ_0 : free space wavelength

2.2 Coplanar-waveguide-fed aperture-coupled patch and substrate selection

Elementary radiator

patch fed by a CPW line through an aperture (capacitive coupling)

<u>At 30 GHz</u>: patch edge Lp = 1.6 mm CPW: strip s =0.5 mm, gap w = 0.1 mm (impedance=50 Ω) with the substrate parameters: permittivity = 6.15 thickness h = 0.508 mm

Advantages

- CPW * lines allow the use of a single substrate between the patch and its feed line
 - facilitate the fabrication
 - improve the feeding quality
- Aperture coupling is a non-contacting feeding
 - easy to implement and reliable
- Square patch preferred to maximise the circular polarisation purity

* coplanar waveguide

2.2 Coplanar-waveguide-fed aperture-coupled patch and substrate selection

Substrate thicknesses enabling to meet the targeted bandwidths with different permittivities*

• $\varepsilon_r = 6.15$

minimum permittivity to be selected to reduce the subarray spacing to 0.6 λ_0

* isolated radiator considered

ATM-Sat Workshop, June 19th 2002, Berlin

- Operating bandwidths = 500 MHz
 - $\begin{array}{rrr} \Rightarrow & 2.5 \ \% \ at \ 20 \ GHz \\ & 1.7 \ \% \ at \ 30 \ GHz \end{array}$
- <u>Design goal</u>

Return loss lower than -10 dB over 1 GHz

$$\Rightarrow \left(\begin{array}{c} 5.0 \% \text{ at } 20 \text{ GHz} \\ 3.5 \% \text{ at } 30 \text{ GHz} \end{array} \right)$$

to take into account the degradations due to

- fabrication and material tolerances
- beam scanning
- mutual coupling
- λ_0 : free space wavelength

Isolated, linearly-polarised patch operating at 30 GHz

2.3 Array radiation characteristics

Maximum broadside directivity D_0 of square arrays

- Realistic design goal: broadside antenna efficiency = 60%
 - \Rightarrow broadside realised gain ~ 30 dB

Good estimation for large arrays

$$D_0 = \left(\frac{4\pi}{\lambda_0^2}\right) A$$

A , antenna geometric area λ_0 , free space wavelength

• Targeted broadside directivity~32 dB

2.3 Array radiation characteristics

Arrays of sequentially rotated elements

- Sequential rotation of elementary radiators used to generate the circular polarisation
 - Geometrical rotation and electrical phase shift applied to each element in a subarray
 - Different element arrangements possible within a subarray (inward, outward or in-out excitations)
 - Subarrays can also be sequentially rotated to improve the axial ratio

Detail of a large array: module of 16 patches

Radiation patterns – Beam scanned in a principal plane

12

Radiation patterns – Beam scanned in a diagonal plane

13

Circular polarisation quality

ATM-Sat Workshop, June 19th 2002, Berlin

Record

- \bullet For a scan angle θ_{s} varying up to (±) 35°
 - Axial ratio \leq 4.3 dB $\,$ (< 3 dB for θ_{s} \leq 25°)
 - Cross-polarisation \leq -12 dB
 - Side lobes \leq -13 dB
 - Radiation efficiency $\geq 83~\%$
 - $-30.5 dB \le Gain \le 32 dB$ (1600 elements)

with element spacing=0.35 λ_0 (within subarrays) subarray spacing=0.6 λ_0

Only patches are sequentially rotated

 Lower cross-polarisation expected when performing additionally a sequential rotation on the subarrays
 ⇒ reduced axial ratio, higher maximum scan angle

3 RF electronics and system parameters

Different options to perform the transmit, receive and calibration functions

RF aspects	Options	Comments
Receiver	Homodyne architecture	relevant choice for monolithic integration
	Heterodyne architecture*	conventional approach, good performance, space required, medium cost
Transmitter	Direct conversion	profitable only if integrated solutions exist
	Dual conversion*	feasible right now, digital modulation possible and preferable
Components	LO built with discrete components 1 Local Oscillator signal, distributed*	simplest option
Calibration	Internal calibration	optimum practical choice but expensive
	External calibration	cost-effective but bulky
	Calibration based on mutual coupling measurements	may be interesting but experimental testing required

* options compatible with a short-term fabrication (requisite components presently on the market)

System parameters

4 Terminal architecture and construction

Packaging architecture

Terminal antenna construction (a)

Terminal antenna construction (b)

(+) advantages, (-) drawbacks

5 Manufacturing guidelines

Technological recommendations for fabricating full-scale terminals

- Receive and transmit functions performed by 2 separate antennas
 - Heterodyne receiver
 - Dual conversion transmitter
- Modular, hybrid architecture
- Multichip-module-laminate technology
- Flip-chip interconnections
- Digital beamforming

Further comments

- Iterative and progressive 3-step implementation suggested
 - module (16 elements)
 - intermediate building block (256 elements)
 - full-size terminal
- Factors limiting the antenna dimension
 - efficiency of the heat-sink process
 - performance and cost of components available when realising the complete active antenna
- An up-market-oriented product is targeted

