

Competence Center for Advanced Network Technologies and Systems

Mobility Management

Related Activities within the ATM-Sat Project

Presentation to Industry Representatives and Interested Scientists

http://www.fokus.gmd.de http://www.fokus.gmd.de/cats

Mobility Management

Consists of:

 Protocols providing information to establish and maintain connections between (mobile) users in a (mobile) network

Mobility Management

Location Management

- Process allowing network to locate a user
- Location corresponds to access point or geographical position
- Handover Management
 - Process allowing the network to maintain an established connection, if
 - I terminal/network node moves so that radio connection cannot be maintained
 - connection path within network must be rerouted

Contents

Location Management Overview

- Location Management in LEO-ATM Systems
- Handover Management Overview
- Handover Management in LEO-ATM Systems

- location information
- Update criteria
 - Always
 - Distance/time/etc
 - Profile

- Query database/ evaluate reachability info
- Terminal paging for exact location

Improvements

- Objectives
 - Reduce required overhead
 - Reduce delay
- Improvement methods
 - Caching
 - Result of a location query is stored
 - Cache invalidation algorithm
 - Replication
 - Location of user might be replicated at specific sites
 - Determination of optimal set of replication sites

Progress

- Location Management Overview
- Location Management in LEO-ATM Systems
- Handover Management Overview
- Handover Management in LEO-ATM Systems

General statements

- Technique used:
 - Centralized database (NCC)
 - Location update not based on access node (satellite) to reduce location update
 - Terminal paging for call delivery if necessary
- Improvements used:
 - Caching in satellites:
 - "calling" satellite
 - intermediate satellites

Location Registration

- Satellites connected to NCC
- Terminal registers (1)
- Satellite sends geogr. position and identification to NCC (2)
- NCC stores geographical position and satellite orbit (3)
- Satellites cache location information

Location Update

- Location update only for:
 - Vast terminal movement
 - New access satellite in different orbit
 - Connection interruption
- No update for:
 - Small satellite movement
 - New access satellite in same orbit
- Caching/Replication
 - Update of cache along the path
 - Replication possible

Call delivery (cont.)

Always ask NCC

- compute destination based on geographical position and satellite orbit \Rightarrow possible paging
- try connection establishment if location information is cached in source satellite or along path of location query

Pros/Cons

Location Registration/Update

- Pro: Reduced number of location updates
- Pro: Longer "live" for caching info
- Cons: Exact position not known
- Cons: Additional resources for caching
- Call delivery
 - Pro: Reduced connection setup delay
 - Cons: Added signalling for paging

Future Work

- Location Registration/Update
 - Simulation of algorithm with regard to:
 - Movement distance before update
 - Accuracy of satellite computation algorithm
- Call delivery
 - Evaluation of different schemes, e.g. hierarchical database location
 - Cost-Benefit analysis of described algorithm

Progress

- Location Management Overview
- Location Management in LEO-ATM Systems
- Handover Management Overview
- Handover Management in LEO-ATM Systems

Process Description

Characterization

Network

2000-12-12 Marc EmmelmannC. Titte/A.Gladun 18

Requirements

- Ensure handover of all user connections
- Design algorithm to be scalable
- Resource consumption within acceptable limits
 - signalling load
 - satellite/terminal computation resources
- Guarantee QoS parameters during handover process
- Guarantee QoS parameters on new paths

Influence of Attributes (1)

Initiation

- Amount of network resources needed to begin handover
- Complexity of handover node determination algorithm in terminal

Terminal complexity

Network initiated

Network assisted

Terminal initiated

Network Node Resource intensive

Influence of Attributes (2)

Active links

- Both: Cell integrity must be maintained (cell loss, cell duplication, cell misordering)
- Hard:
 - Simpler design of terminal
 - Delay and Delay variation parameters might be exceeded
 - \Rightarrow Intelligent Algorithms needed
- Soft:
 - Complex terminals
 - Simpler to guarantee QoS during handover

Influence of Attributes (3)

Direction

- Effect depends on realization of active link attribute
- With hard handover:
 - Forward handover introduces delay because link is interrupted till handover is completed
 - Backward handover shortens delay to actual connection switching
- With soft handover
 - Without delay restriction, other factors like handover duration and complexity can be considered

Influence of Attributes (4)

Scope

- Spotbeam (Intra-Satellite) Handover:
 - Quite frequent (1 min) \Rightarrow simple algorithm is needed
 - Requests might be blocked because of missing radio resources
- Inter-Satellite Handover
 - I New path determination/creation involves higher layers ⇒ long delay possible
 - Connection switching \Rightarrow cell loss, duplication, misordering
- Link Handover
 - Influence depends on network topology satellite orbits, counter-rotating links, etc.

Handover Metrics

Handover parameters to evaluate algorithm

- Handover rate
- Handover delay
- Call and handover blocking probability
- Handover probability
- Duration of interruption
- Handover failure probability
- Probability of unnecessary handover

Progress

- Location Management Overview
- Location Management in LEO-ATM Systems
- Handover Management Overview
- Handover Management in LEO-ATM Systems

General Statements

- Initialization of handover is terminal driven with network assistance
- Soft handover should be supported as well as forward and backward handover
- Spotbeam handover independent from network topology
- Network topology determines algorithm for Inter-Satellite and Link handover

Spotbeam handover

- Handover is executed at radio layer ⇒ simpler, smaller delay
- Handover call blocking less desirable than new call blocking, can be reduced by:
 - Dynamic channel allocation
 - Handover queuing
 - Guard channels
 - Call admission control in radio (or higher) layer

Inter-Satellite Handover

- Long delay requires intelligent algorithms to keep track of QoS parameters
- Lossless handover algorithms (no cell loss, no cell duplication, no cell misordering):
 - Use of mechanism to mark end of data flow on old path, start of data flow on new path and to forward undelivered data
 - Use of mechanism to buffer and transmit data on the new path early to compensate for predictable delay

Routing Issues

- Topology depends on constellation and ISL configuration:
 - Permanent ISLs allow to have a network connectivity pattern that can be represented by a finite state machine
 - ISL between counter-rotating orbits introduce shorter paths and fast changing connectivity
- Static topology allows pre-computed routes
- Dynamic topology requires routing algorithms on satellites

Routing Algorithms

- Full connection re-routing
 - Computes optimal route at expense of signalling load and delay
- Route augmentation
 - Adds link to existing route: fast, but not optimized
- Partial connection re-routing
 - Cranks back existing route till node with best link to destination: Speed/Short path compromise
- Multicast connection re-routing
 - Maintains multiple routes to reduce delay

Future Work

- Simulation of spotbeam handover
 - Evaluate usefulness of additional algorithms to prevent blocking
 - Determine best parameters for this algorithms
- Evaluate mechanism to ensure fast, lossless handover in static networks
 - Comparision between different schemes
 - Correctness of pre-computed routes