

Scheduling and MAC Simulation for ATM over Satellite with OPNET

Janez Bostič

German Aerospace Centre (DLR)
Institute of Communications and Navigation
Digital Networks Section

Contents

- Scenario overview
- Shared medium => MAC
- ► ATM service categories over ATM-Sat (direct access)
- Scheduling in fixed networks and
- Simulation of MAC and scheduling with OPNET
- First results and conclusions

Scenario

MAC for User and Group Terminals Access

<u>Uplink</u>:

- Multi-frequency Time Division Multiple AccessMF-TDMA:
 - Based on Combined Free-Demand Assignment Multiple Access (CF-DAMA)

MAC for User and Group Terminals Access (cont.)

Downlink:

- Time Division Multiplexing (TDM): each terminal pick up only its packets
- TDMA: the information about the packets is broadcast at the beginning of the downlink frame

Bandwidth on Demand (BoD)

Resource requests:

- In-band signalling: piggy-backing; problem: the resource request should be sent only once per frame
- Out-of-band signalling:
 - Reserved mini-slots: preferred for long duration bursty connections
 - Random slots: can be used for connections with long off periods for initial requests

Resource assignment:

- Centrally based scheduling algorithm in satellite:
 - Uplink
 - Downlink

ATM Service Categories over ATM-Sat (Direct Access)

ATM	Guaranteed	Not Guaranteed	Traffic Shaping	ATM-Sat
Service	Traffic	Traffic	in Satellite or Ingress	Target
Category	Parameters	<i>Parameters</i>	Network Point	System
CBR	PCR (Number)	(PCR)	PCR	+
rt-VBR	SCR	MBS, (PCR)	PCR,MBS	-
nrt-VBR	SCR	MBS, (PCR)	PCR,MBS	+
ABR	MCR	(PCR)	PCR	0
UBR	(MCR)	(PCR)	(PCR)	+
GFR	MCR	MBS,MFS,(PCR)	PCR,MBS	+0

CBR: Constant Bit Rate

rt-VBR: real-time Variable Bit Rate

nrt-VBR: non real-time Variable Bit Rate

ABR: Available Bit rate

UBR: Unspecified Bit Rate GFR: Guaranteed Frame Rate

MBS: Maximum Burst Size

MCR: Minimum Cell Rate

MFS: Maximum Frame Size

PCR: Peak Cell Rate

+: Supported

o: Possibly supported

-: Not Supported

Peak Cell Rate (PCR)

PCR does not only mean the <u>number of cells</u> per time unit but also minimum inter-cell time !!! Why?

In uplink the cells are transmitted in bursts

⇒ Traffic shaping is needed to enforce PCR and MBS!!

Scheduling

Scheduling an important part of the QoS mechanism:

- Used where congestion can occur
- It enforces service guarantees and fair access to resources

What to guarantee:

- Bandwidth
- Delay
- Jitter

Queuing Structures

Per-group queuing:

- Service category (CBR, VBR, ...)
- Service class (CBR with CTD = 250μs, CBR with CTD = 2.5ms, ...)
- Conformance definition (CBR.1, VBR.1, VBR.2, ...)

Per-VC/VP queuing:

Ability to guarantee service to one flow independent of behaviour of other flows

Switch Output Port Buffer Management and Scheduling

How to do that :

- 1. Installed by signalling
- 2. Predefined (carried in packets)

Algorithms:

- Weighted Fair Queuing (Routers)
- Weighted Round Robin (ATM switches)

Shared Medium Uplink Scheduling

How to Guarantee MCR in the Uplink?

Algorithm similar to Weighted Round Robin (WRR)

Weight is set according to the Minimum Cell Rate

How to guarantee SCR in the Uplink?

The SCR parameter is specified during the call setup:

- Token bucket process is active for each flow in satellite (scheduler)
- The resources are allocated according to the tokens in bucket nad resource requests
- The maximum number of allocated slots per frame may be limited.
- In the case that there is not enough resources WRR can be used with the weights of SCR

MAC Simulation with OPNET

- One satellite with standard OPNET ATM switch
- **Earth station with permanent FDD links to satellite**
- User terminals share the medium (FDD) in uplink (TDMA) and downlink (TDM):
 - Standard OPNET workstation models (TCP/IP)
 - UNI source OPNET models (native ATM)
- New modules: wireless terminal transceiver with MAC and ATM interface, satellite transceiver with MAC and ATM interface
- Adjustable parameters:
 - Carrier bit rates (asymmetric uplink-downlink possible), number of time slots, number of slots allocated to terminal, MAC frame length

OPNET Simulation Scenario

Sat_Subnet_ATM

Satellite AP_MAC Finite State Machine

OPNET 6.0.L ATM models for simulation with shared medium:

"OPNETWORK2000:

Wireless ATM
Simulation with
Standard OPNET
6.0.L Models"

Message Sequence Chart for Outgoing Connection Setup

OPNET 6.0.L Version has a proprietary ATM signalling:

ATM signalling message is packed into one ATM cell

Simulation Results (Response Time)

Simulation parameters:

- MAC:
 - Frame length: 24 ms
 - Time slots number: 100
 - Carrier bit rate: 2,150,000
 - MAC packet size: 57 bytes
- <u>Protocols</u>: ATM with AAL-5, Transport Adaptation Layer (TPAL)
- Application:
 - Transmission of packets with constant length of 50,000 bytes

Response time difference between GEO satellite and WATM: ~527 ms

Simulation Results (cont.)

FTP transmission over satellite

Simulation Results (cont.)

FTP transmission over WATM

Conclusions

ATM in satellite networks:

- Bit rates for direct access are much lower (limitation for statistical multiplexing)
- In uplink direction the approaches differ from the ones in downlink or fixed network connections
- ► ABR, UBR and GFR service categories require similar parameters over the shared medium

Ongoing work:

Uplink scheduling algorithms implementation and evaluation

Future work:

- OPNET simulation upgrade with emphasis on IP services
- Selection of realistic applications

